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A method of solving the problem of the reflection of a wedge wave at the edge of an acute-angled 

elastic wedge, that is invariant under a two-parametric group of transformations, is proposed. 

Representations of this group are used to obtain the mean values of the intensities of the fictitious 

sources situated at the edge of the wedge. The mean values obtained are used to construct the unknown 

functions using an expansion in Hermite polynomials. 

The difficulty in solving the problem of the excitation of wedge waves from the edge of an 
acute-angled wedge, and also the problem of the reflection of a wave incident at the end, is due 
to the following. First, the problem of scattering at the end has no small parameters as, for 
example, in the problem of the scattering by a defect of the edge [l], and hence it cannot be 
solved by perturbation methods. Second, the eigenfunction of the problem of the propagation 
of wedge modes in an acute-angled wedge are expressed in terms of special functions [2], and it 
is not possible to use them to construct Fourier expansions. Third, the presence of a pair of 
boundary conditions does not enable the reflection method to be applied to the problem of 
scattering at the end. 

The problem of the excitation of a wedge wave has a two-parameter group of symmetries. 
As we know, the presence of a group of symmetries enables the order of the ordinary 
differential equations [3] to be reduced, and enables the variables to be separated in the partial 
differential equations [4]. In this paper representations of the group of symmetries are used to 
construct a generalized Fourier transformation for the integral equation, to which the problem 
in question can be reduced by means of potential theory. 

1. FORMULATION OF THE PROBLEM 

Consider the problem of the excitation of o’scillations in an acute-angled elastic wedge. 
Suppose the wedge has an end to which concentrated forces and moments are applied. 
Suppose the edge of the wedge lies along the y axis while the end lies along the x axis. The 
wedge therefore occupies the region x > 0, y > 0. 

We will use the theory of thin plates [2] to describe the oscillations of the acute-angled elastic 
wedge. The equation for the transverse antisymmetric oscillations has the form 
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where w(.zr, y,t) is the transverse dispfacement of points of the wedge, 1: and v are the elasttc 
constants, p is the density of the material, 8 is the aperture angle of the wedge, and I(x, y, t) is 
an auxiliary function representing fictitious sources and which is equal to zero in the region 
occupied by the wedge. 

The following boundary conditions are satisfied on the edge of the wedge (where s = 0) 

M,=O, aM,/ax-2aM,fay=O i 1.2) 

which in our problem reduces to the requirement that w must be finite in the vicinity of the 
edge. We define the following operators at the end of the wedge 

r,lwl=~-*M~~,=~ =fttx,t) 

(1.3) 

Here the functions .$(x9 t> and f2(x, t) are the concentrated moment and force applied to 
the end of the wedge. Note that the factor x in front of the moment f; is chosen to ensure 
algebraic homogeneity of the zeroth degree in both boundary conditions. 

The problem of the reflection of a wedge wave reduces to the problem of excitation if we put 
the functions ft and f, on the right-hand side of (1.3) equal to -fi’ and -f,: respectively, 
where f; and f; are the values of the operators r, and r; for the incident wave. 

We will use potential theory to solve the boundary-value problem (l.l)-(1.3). We will 
introduce an inhomogeneity I at the end of the wedge in the form of a sum of simple-layer and 
double-layer type sources and we will require that the solution of Eq. (1.1) obtained in the 
region (-- < y < -) should satisfy the boundary conditions (1.3) when y = +O. We will choose 
the algebraically homogeneous function I in the form 

where 6 is the Dirac delta function, 6’ is its derivative, and cp, are weighting factors. 
To solve Eq. (l.l), (1.4) we will introduce Green’s function G(.u, y, 1. x’. y’. f’). which is the 

solution of Eq. (1.1) when I(s, y, t) = s(s- .u’)&(y- y’)&(r -t’). The function G must satisfy the 
radiation conditions. A procedure for calculating G is given in the Appendix. The solution of 
Eq. (1.1) is the convolution of Green’s function with (1.4) 

w(x,y,t)= ] j ]G(x,y,t,x’,y’,t’)l(n’,y’,r’)dx’dy’dt’ (1.5) 
-wO 

The values of the operators T,]w] have discontinuities at y = 0, equal to respectively [S] 

Bearing in mind that the Fourier representation of the derivatives of Green’s function (A.l) 
gives arithmetic mean values on the right and left at the point of discontinuity and that the 
boundary conditions are being sought at y = +O. we obtain 
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rj[~l(y=+o = !4cPi + ri[“l~y=O (1.7) 

Substituting (1.5) into (1.7) and using the evenness of G along the y axis, we finally obtain 

b(X,1)=_~~G~(x,r,x’,t’)cpi(X’,f~)~’dt~ (1.8) 

Here and henceforth summation is taken over repeated indices and 

G;, =Gi2 =)$6(x-x’)&r-t’), G;, =r,[xG(x,y,t,x',O,r')] 

G;, = r2[x 2a 
-G(x,y,t,x’,O,t’)l ay (1.9) 

The operators Ii act on the variables x and y. 
Hence, the problem of the excitation of a wedge wave reduces to integral equation (1.8) in 

Cpi' 

2. SYMMETRY GROUP 

The coordinates x and y will henceforth be assumed to be dimensionless. It can be estab- 
lished by a direct check that Eq. (1.8) admits of a two-parameter group H of transformations of 
the coordinates, i.e. it remains valid when the transformation h E H is applied simultaneously 
to the arguments of the functions cpi and i. 

The group H is generated by shifts in time and homothety of the half-plane x >O with 
arbitrary positive coefficients. We will parameterize the group Zi as follows. Suppose that as a 
result of the action of an element of the group /z(.xO, to) the point (x, t) is transferred to the 
point 

h(xo,fo)“(x,t)=(nro,fxo +‘I)) (2.1) 

Group operation is specified by the formula 

m2r f2 w, , q ) = h&q 1x24 + r2) (2.2) 

We will introduce into the group H the left-invariant measure 

dp,(h(x,t)) = x-2c7!ui? (2.3) 

It was obvious that the kernel llG,~ll can be represented using a function of two arguments, 
invariant under the transformations of the group H 

G&,t,x',t')=(~')-2Gii(~/~', (t-t’)/x’) (2.4) 

Since the parameters x0 and t, of the group H are defined in the same region as the 
coordinates x and t, we can assume that all the functions are defined on the elements of the 
group H. By (2.3) and (2.4) 

where Ir,, and h, are the elements of the group corresponding to the points of observation and 
radiation, respectively. 
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Note that the right-hand side of (2.5) is the convolution of IIG,, II and (cp,} on the group II ]ti]. 
Consequently, a generalized Fourier transformation can be used to solve Eq. (2.5). To do this 
we introduce a two-parameter family of representations 7‘(h) of the group Ii. Eq. (2.5) IS 
averaged over the group H with weighting factors defined by each of the representations 7. 
and we are then able to express the mean of cp, in terms of the mean of .1;. The functions cp,(/r) 
are then synthesized from the means of cp, over all the representations. 

Suppose Tis an n-dimensional representation of the group II. We will define a, and b; as 
column-vectors in TL-dimensional space of the representation 7‘. where one of the coordinates 
of a, and F; in a certain basis is equal to cp,(/r) and J(/z) respectively, while the remaining 
IZ - 1 coordinates are equal to zero. Note that the operator II G,, II is scalar in this space. 

Using the commutivity of the operator II G,! II with any matrix, which is independent of h, i WC 
can write the following expressions for the means of 

(TV&), = J Tu(&‘)J G~(h;‘h,)~j,(h,)d~,(h,)~~~(‘,)= 
H H 

= JG,,(~)T,(~-')(T,~j)ld~L(7), Z = h;‘h, 

The means of (7. Sj* and (7-Q ) I li are defined by the expressions 

(T,&), E j ~u(h-‘)~;r(h)d~/_(h)r (7,Qr)k P J T~(h-‘Pi,(hV~L(h) 
H H 

(2.6) 

where T,, is the matrix of the representation 7’ and the subscripts k and 1 indicate the 
components in representation space. 

Note that the vector (T,,,> is independent of the coordinates. Its components can be 
determined as follows. We defined the matrices IIG,,,, II and IIG,!,, /K’ as 

Then 

in the case of a non-degenerate matrix II G,,k, II, 

3. THE CONSTRUCTION OF REPRES~NT.4TIONS 01: II AND THE SYNTIIIISIS 01; ‘I‘HIf 
SOI.IJTION 

The group H has no two-parameter family of one-dimensional representations 171. This 
family would represent the possibility of a direct construction of the Fourier expansion. This 
group H admits of a two-parameter family of reducible unexpanded representations 7’““. 
where a is a continuous complex parameter, while rz=O. 1. 2. . . The dimensions of each of 
the representations T”.“, is 12 + 1. 

r The basis of the representation r “P is the set of functions 

ek =tkP, k=O,l,..., n, aEC i3.1) 

defined on the half-plane .Y > 0. We will obtain the matrix 7;,” which has the property 

h(Xo,t,,)Oe/ = T;‘“ek 
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Analysing the action of the elements of the group H on the function (3.1) and using a 
binomial expansion we obtain 

7-$“(k(x,t)) = (-1)1-k +-a+‘+-k, @“(Ki(x,t)) = +“+Vk (3.2) 

When I c k the corresponding value of C: is assumed to be equal to zero. 
We will define the vectors a,, and 6 as 

ail =Grcrl(Pi, ~~ =6hf;:) k=O,l,...,n (3.3) 

i.e. the last coordinates are non-zero. The components (T, oi), (T, F;)and IIG,,, II can be 
expressed by the following formulae 

(T,~i), = C~a_; Xa’ktn-k(pi(X,t)x-2dtdx 
00 

(3.4) 

(T,l$), = C;;_T xa+kt”-k~(x,t)x-2dtak 
Do 

(3.5) 

GUM = C$T Xa+kr’-kG;(X,r,l,0)Y2drdx 
O-0 

(3.6) 

Here (T, fi) is calculated from the boundary conditions of problem (l.l)-(1.3) while (T, oj) 
is found from (2.8). 

The integrals in (3.4)-(3.6) must be understood as action on the functions (pi, 8 and G,; of 
the generalized functions x?“, regularized as, for example, in [8]. 

The functions cp,(x, t) are synthesized as follows. Put k =0 and a = -io+ 1. The integrals 
over x are a Fourier transformation with respect to the variable In x and can be expressed in 
the usual way. An expansion in the variable t can be constructed in a system of orthogonal 
polynomials, for example, Hermite polynomials. Suppose H,” are the coefficients of 
orthonormalized Hermite polynomials, i.e. [9] 

It is obvious that 

H,,(r)=$H;r”, T e-‘2H,(t)Hn(r)dt=6,, 
-0D 

(3.7) 

7 7 H,(t)cpi(x,I)xa-2d=~~oH~(Ta’m, @i)o (3.8) 
-= 0 

Formulae of a Fourier transformation with respect to the variable In X, and also the relations 
of orthogonality of Hermite polynomials (3.7) gives the following expansion 

~ H”(t) ~ H,“(Ta’“, ~i)odO 
m=O 

Equation (3.9), where (T. 0,) are found from (2.8), is the solution of Eq. (1.8). 

4. DISCUSSION OF THE RESULTS 

(3.9) 

We have proposed a method of solving the problem of the radiation of wedge acoustic 
waves, the essence of which reduces to the following. 

Green’s function G(x, y, t x’, y’, t’) is calculated (see the Appendix). The function G, is 
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constructed from (1.9). Using (3.6) G,,,, is calculated for all real w and non-negative integers k 
and 1. The matrix IIG,,, II is inverted. 

The functions J are synthesized using (1.3). The means {7‘. I;;) 
(T. 0,) from (2.8) using IIG,,, II-’ . 

are calculated from (3.5) and 

The functions cp,(x, t) are obtained from (3.9). The solution is found by the convolution (l.S} 
and (1.4). 

The technique fcx evaluating the integrals and series (3.4)-(3.9) requires further 
development. 

We will obtain Green’s function of problem (1 .l) and (1.2). Bearing in mind that Ci = C;( X. v -- ,P’. ! -~ r’. 
x’) and assuming r’ = 0 and I’ = 0. we can write 

Equation (1.1) reduces to the following ordinary differential equation (x’ is a parameter) 

tA.1) 

zd +2&(1-v)k ;I; (A.2) 

In the region 0 < x < x’ there are two solutions bounded as x -3 0 [2. Y] 

W, = M(4.2; 2kx)emk, w2 = M(2+5,2; 2kr)e-” 

~=-,+~[6~-2+3(1-v~)pF’tg-~(B12)(olkj~~ 

Here M(a. 0: z) is the Kummer function. In the region s > x’ there al-e two solutions that arc bounded 

as x+= 

w3 = U(3.2; 2k_xp, w2 = (1(2+&2: 2h) 

where U(a, b; z) is the confluent hypergeometric function. 

The solution of Eq. (A.2) is 

G(x) = -(n,w, + u2w2), 0 < x < x’; G(x) = (a,w, +u,w,), x > x’ (A.3) 

where a, are constants, found from the equations 

$ aiwi(j-l) = -5jr&(21)-2(~‘)A, j = I,...4 
i=l 

Suppose W,., is the inverse matrix to IV:‘-“. Then a,(~‘) = -4’(2~)~~(x’)~~W,~(x’). 

Reverting to (A.3) and (A.l), we obtain the required representation of (;. 

This representation of 5 is not unique. The representation of (; in the form of a series in Laguerrc 

polynomials may turn out to be more convenient. Suppose L[ NJ is the operator on the left-hand side of ] 

(A.2). The following equations hold [ 121 
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where L’, are Laguerre polynomials of the first kind, while c,,, is the velocity of the wedge waves. It is 

obvious that for any IV and k 

Using the orthogonality relation for Laguerre polynomials [9] 

~-~zz#Qz)dz=(.+l,a, 

we can represent the function 5 in the form of a series 
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